
2022

The Rise of

Data Science
A Whitepaper on Deep Learning
for a Confident Future

Alex Harper

Table of Contents

Summary . 3
About Brytlyt . 4
In-database AI . 4
Bringing AI to the Database

Why Deep Learning? . 5
The Challenges . 6
Does deep learning always require large datasets?

The Nature of Data . 7
Structured and Unstructured Data
Feature Engineering and Data Discovery

Exploratory data analysis . 8
Feature transformation . 9
Low-Code Deep Learning . 9
What is a predefined model?
Integrated Development Environments (IDE)

Serverless Platforms . 10

Brtylyt’s Integration with Open Source Software . 11
PostgreSQL
PyTorch
Scikit-learn
NumPy and Pandas
Jupyter Notebooks
MLflow

The Purpose of MLOps . 12
Deployment
Framing the problem (CI/CD)

The Future of Deep Learning is Bright . 13

www.brytlyt.io

Summary
In 2021, the demand for data science skills
hit a record high of 295% after a five-year
climb. In 2020, IBM found that every person
generated an average of 1.7 MB per second.
For context, an audio call over your mobile
phone uses around 2 MB per minute. With
volumes of data booming like this and a
persistent skill shortage, a large gap exists
that requires specialist solutions. Traditional
machine learning methods are not able to
keep up. Deep learning is a more powerful
solution that can handle larger datasets and
does not require a trade off in performance
as the scale of data increases. Deep
neural networks can ingest and process
unstructured data, speed up the pre-
processing of structured data and automate
feature extraction. This also reduces the
likelihood of needing human intervention.
However, the adoption of deep learning
methods are best implemented when
they are accompanied by a solution that
mitigates the need for deep tech expertise.

Until now, deep learning solutions have
been fragmented with limited potential. In
addition to the specialist knowledge required
for building neural networks, deep learning
is often deployed with multiple software
packages across disparate hardware and
different operating systems. Not only is this
slow, but deploying a trained deep learning
model eats up roughly 80% of the cost of
deep learning. This happens because of the
complex process behind keeping models up
to date and relevant.

The Brytlyt platform addresses issues
across the data science life cycle, including
deep learning. From data discovery, data
preparation and pre-training to training,
deploying, through to maintaining MLOps
(Machine Learning Operations) efficiency.
With an advanced in-database AI solution
built on PostgreSQL and PyTorch technology,
Brytlyt can seamlessly slot into pre-existing
tech stacks whilst supporting deep learning,
traditional machine learning and external
frameworks.

This paper will outline some of the challenges
organisations face in adopting deep learning
as they face a future driven by the advances
in AI. It will then explore solutions available to
users of the Brytlyt platform.

www.brytlyt.io

Brytlyt has built the world’s first all-in-
one serverless platform that brings in-
database AI to GPU-accelerated analytics
and visualisation. Instant insight and
effortless deep learning are at the core of
the platform. It should not take hours to
query a complex dataset, and it should
not take the best part of a week to train an
intuitive AI model – Brytlyt’s purpose is to
challenge these notions. The platform also
aims to make maintaining your models after
deployment as simple as possible.

Users can use in-database AI to train a
model directly from their database without
leaving the GPU-accelerated environment,
removing the need for slow back and forth
transfers of data between the database
and the training environment.

Bringing AI to the Database

Any model that makes it into production
must be wrapped in a solution that can do
these three things:

• Authentication, user access, and
security

• Scaling and concurrent usage

• Recording and tracking the production
pipeline end-to-end and retaining the
integrity of model versioning

Up until now, the approach has been to
reinvent the wheel and build a solution
from scratch that uses REST API, Python
and microservices. But databases have
already solved this challenge. By bringing
AI to the database, your end solution is
simple, cost effective, and reliable.

In-database AI aims to create a better
experience for data scientists when building
machine learning and deep learning models.
The Brytlyt database uses integrated AI
to ingest, explore, analyse, and visualise
complex datasets in milliseconds, ready to
launch a model into production.

Users can use in-database AI to train a
model directly from their database without
leaving the GPU-accelerated environment,
removing the need for slow back and forth
transfers of data between the database and
the training environment.

In-database AI

www.brytlyt.io

About Brytlyt

Why Deep Learning?
Deep learning is a sub-division of machine

learning. It aims to mimic the neural pathways

of the human brain with multiplex deep

neural networks. The structure of an artificial

neural network (as shown in Figure 1) has

multiple hidden layers that inform the output.

The properties created by the interactions

between these hidden layers make deep

learning a self-learning algorithm.

Traditional machine learning is a sub-division

of AI (Artificial Intelligence). Algorithms are

used to perform a task automatically – like

predicting an outcome – by recognising

patterns and relations in a dataset. Machine

learning relies on a traditional statistical

approach and requires more human input in

the training process.

Deep learning produces highly intelligent

results because it mimics the behaviour

of human neural pathways. However, a

major factor preventing organisations from

implementing deep learning is a lack of the

right skillset required to support it.

This has led to a rise in popularity of serverless

deep learning platforms like Brytlyt that can

make deep learning accessible to a wider

variety of users.

Deep learning algorithms can not only do
anything machine learning can do, they can
also perform well on larger datasets. Where
traditional machine learning requires a high
level of human input from a skilled data
engineer to extract features, a deep learning
algorithm can do this on its own. This is a
fundamental asset of the training process
and is what makes deep learning so powerful.

Where deep learning can handle billions of
rows of data at a time, traditional machine
learning algorithms are quickly overwhelmed
as the amount of data grows. A major
triumph of deep learning is extracting and
learning features from raw, unstructured data
with limited human instruction.

www.brytlyt.io

The challenges
There are two main issues affecting the

widespread adoption of deep learning.

1. The level of skill and expertise needed to

develop an effective neural network

2. The quantity of data needed to learn

accurate patterns

Deep neural networks have a complex internal

structure that needs to be fed more data than

your standard machine learning algorithm for

it to be self-sustaining.

Conversely, traditional machine learning

requires input from a data engineer.

This is not to say that deep neural networks

can or should be left ungoverned. Data is

always evolving. Metrics must be defined, and

model outputs must be tracked consistently

to ensure accuracy and account for context.

It is worth keeping in mind that whilst the

data science journey ends with a fully trained

model, launching that into production and

maintaining it is a significant undertaking in its

own right.

Does deep learning always require
large datasets?

There is no straightforward answer.

Typically, a neural network is more

complex than a traditional machine

learning model, but they can often be

very similar.

A single neuron is all that is needed to

implement a neural network for linear or

logistic regression. But in technical terms,

it would not be a true neural network

with less than three hidden layers. The

complex nature of a deep learning model

comes with a corresponding need for

more data, the greater the complexity,

the more data is needed.

The amount of data required for

successfully training a model using deep

learning depends on at least two factors

1. The complexity of the problem

statement.

2. The complexity of the deep learning

algorithm.

Because of this, it makes sense to start

with a simple use case that can be

iteratively developed into a more complex

solution as needed.

www.brytlyt.io

The Nature of Data
Data is available to us 24/7, and this is

proving a challenge for traditional technology

solutions. Applications like Brytlyt that use

real-time streaming of data are becoming

more prevalent, so any solution that

implements deep learning or MLOps needs to

be able to handle data-in-motion.

Structured and Unstructured Data

Structured data is arranged in tables with

rows and columns of numerical values,

dates and strings. The best example

of where we see structured data is in a

relational (SQL) database like the one shown

in Figure 2.

The uniformity of structured data means

statistical analysis is easier to perform when

compared to unstructured data. It is used

in machine learning algorithms, including

linear and logistic regression, random

forest, naïve Bayes, clustering analysis, and

gradient boosting too.

Figure 2: An example of a Relational Database

The volume of unstructured data exceeds

the volume of structured data, but is more

subjective in its use. Unstructured data

can be made up of anything from audio to

emails and blogs. It makes up around 80% of

the volume of data used.

www.brytlyt.io

Feature engineering was once a complex
manual task that required experienced data
engineers to manipulate and transform raw
data. Now, it can mostly be automated, and
critical features can be extracted from raw
data and manipulated in real-time.

Feature Engineering and Data Discovery

One goal of feature engineering is to create
new variables that are not in the initial training
set but are still related to it, also known as
feature transformation. The aim of this is to
simplify and speed up data transformations
whilst ensuring that the model is as accurate
as possible. Regardless of the data or model
architecture, a badly engineered feature will
always have a negative impact.

Most of this work is done in a database,
which is why the majority of time spent by
data scientists is using SQL and database.
No matter how well formatted a data set is, it
is likely that it will need work to prepare it for
machine learning algorithms. There are three
ways to do this.

www.brytlyt.io

An important first step in any machine

learning process is exploratory

data analysis, so that we can better

understand its most basic properties.

Often this involves using simple algebra

rules or standard machine learning

models to piece together the story

that the data is telling. Some of these

techniques include: normalisation

and scaling or linear and polynomial

regression.

Creating features involves creating

new variables that are the best fit for

any given model. As a basic example,

the value of a house may be partially

determined by the length and width of

the land it is built on. A feature we could

create for this then, would be:

Exploratory data analysis

Feature creation

Becomes:

A feature transformation is any function –
normalisation, scaling, or adding constants
– that transforms a feature from one
classification to another. The dataset
is altered but it retains its information
properties. A common example of feature
transformation is scaling. By transforming
features, the number of features used in the
training set can be scaled up or down, thus
providing an increase in the speed of training
and/or the accuracy of a given model.

For example, if there is a one-line address
column (one string), the feature can be
transformed to create additional relevant
features. In other words, it can be scaled up.

Feature transformation

Name Address City

P. Sherman 42 Wallaby Way Sydney

Address

P. Sherman, 42
Wallaby Way,
Sydney

Figure 4: An example of feature transformation

www.brytlyt.io

Low-code machine learning is an emerging
trend in the AI space. For the practice of deep
learning to be made more accessible to a
larger population of users, the tools used to
build deep learning algorithms need to be
simplified and easy to use.

By using a platform like Brytlyt that contains a
library of predefined models, it is possible to
access the power of deep learning through a

design ‘n’ build framework.

What is a predefined model?

A predefined model is a pre-built but
untrained neural network. Brytlyt has its
own library of pre-built, untrained and
some partially trained neural networks.
Predefined models can form the basis of
an Integrated Development Environment
(IDE), and enable a low-code environment

for more general use.

Integrated Development Environments

Platforms like Brytlyt provide an IDE for
creating and deploying deep learning
models. Built by experts in the field and
equipped with the right tools, users can build
complex models faster, deploy them sooner
and maintain them with less overhead.

Low-Code Deep Learning

For example, a study may require you to
classify mushrooms into edible or poisonous
by species. Using a database of mushrooms
features that includes size, weight, stalk length,
cap diameter, cap colour, and cap shape, a
multi modal approach can be applied.

• A binary classification problem to sort data
into edible and poisonous mushrooms.

• Two multi classification problems to sort the
data into its respective species.

In this approach, the first building block
we need is the binary classifier (edible
or poisonous) followed by two additional
separate building blocks to predict its species.
The final building block would be the result of
edible or poisonous, plus its species variant.

In this example, the binary classifier, two multi-
classifiers, and the concatenation are each
four individual predefined models that can be
‘dragged and dropped’ into the desired order.

Serverless Platforms

Cloud computing provides incredible flexibility
to access compute and storage infrastructure.
But the legacy software running on this
infrastructure was not designed to support the
on-off profile that a serverless pay-as-you-go
needs, so typically requires hardware to be up
and running constantly.

www.brytlyt.io

Serverless computing combines hardware,
software, user session state and data using
an on-demand ‘pay-as-you-go’ method.
This all happens when the user connects to
the application.

When the user is disconnected, the
hardware is made inactive by triggering
an ‘on-off’ switch within the software.
The framework of serverless computing
is cloud-native so can be used to build
and run applications without having to
manage or maintain hardware, install
software or manage security. A serverless
solution requires a rewrite of the application
software so that it can rapidly switch
between an active and inactive state.

Besides up to 90% lower cost and an
individually economical approach to the
physical resources required, other benefits
of serverless platforms are:

• Load balancing and capacity
management is automated

• Software updates and security patches
are immediately available

• Effortless scaling up or down depending
on usage

Using serverless* computing means
resources can be allocated and scaled on
demand, and only used as needed.

*On-premise options are available.

The Brytlyt platform is tightly integrated
with a huge array of open-source
software like PostgreSQL, PyTorch,
Jupyter Notebooks, Scikit-learn, and
MLflow amongst others. The ability
to manipulate code fit for a unique
purpose is invaluable to data scientists
and data engineers. They are also
completely free and are often at the
forefront of modern technology.

PostgreSQL

The Brytlyt database is based on
PostgreSQL technology. In addition to the
framework being familiar, it is already
compatible with a range of existing
systems and well-known platforms.

Brytlyt has the added benefit of an
easy-to-use enhanced version of the
standard PostgreSQL connector used by
Python. The connector allows the user
to perform SQL queries and transfer
data using python syntax, which is then
executed on GPUs.

Brytlyt’s Integration with
Open-Source Software

PyTorch

Brytlyt has a unique integration with PyTorch
that works to translate data as tensors
and store data as columns in tables in the
PostgreSQL database, without leaving the
GPU environment. This capability effectively
bridges the gap between the world of the
database and the data science world; in this
instance SQL and PyTorch.

Scikit-learn

Scikit-learn-learn is a python library for
machine learning. It has fast and efficient
tools for machine learning and statistical
modelling, such as classification, regression,
and clustering. It also has a multi-layered
perceptron model for deep learning. Brytlyt’s
integration with Scikit accelerates the process.

NumPy and Pandas

NumPy and Pandas are both libraries
designed for seamless data processing.
Brytlyt users are not held up with tedious data
processing tasks.

Jupyter Notebooks

Brytlyt works with Jupyter to support 100+
coding languages.

MLflow

MLflow is a tool designed to manage the
machine learning lifecycle from end-to-end,
making MLOps a seamless process.

www.brytlyt.io

The Purpose of MLOps
MLOps is the process aimed at unifying the
iterative maintenance process following model
deployment. Monitoring and maintenance
can be done using tools designed for MLOps
(like MLflow). Solutions built around the MLOps
framework aim to function automatically with
limited intervention.

AI models lose their integrity rapidly due to data
drift and a constantly changing environment.
The MLOps process should improve the
quality of production models whilst retaining
validation, model and data versioning, testing
and regularisation.

The following are the stages included in an
effective MLOps system.

Deployment

The final stage of the data science pipeline
and first stage of MLOps is deploying models
to the production system. This is traditionally
handled manually by selecting the best
model from the array of experiments and
then pushing it into production. For example,
a target metric like accuracy, precision, or
recon recall, can be selected so that the
model that performs the best with respect
to that target can then be pushed to run in
production. When implementing MLOps, this
is done automatically.

Framing the problem (CI/CD)

Because any model that reaches production
immediately begins to age, continuous
integration allows for new features and
improved models to reach production faster
and more reliably. As data ages it becomes
less able to reflect a real-world environment.
As a result, the model’s performance can
suffer, dwindle, or even become irrelevant.

There are two options when this happens.

1. New data can be added to the historical

data to fortify the model in retraining across

the whole data set, or...

2. The model can be trained on the new data

only to refresh the model to the current real-

world environment

In any case, monitoring and retraining is a

basic requirement to keep these models

relevant. Changes in the summary statistics

of the data, including calculations of the data

count, mean, median, and standard deviation,

can give vital clues as to the reasons why the

effectiveness of an algorithm can decay. This

needs to be monitored side-by-side with the

model’s effectiveness so that the model can

be updated or changed accordingly.

www.brytlyt.io

www.brytlyt.io brytlyt.io @brytlytDB brytlyt

The Future of Deep
Learning is Bright
There is no doubt that deep learning has

the potential to transform the way we use

data. However, we have established that,

traditionally, deep learning has been a

laborious process. The investment required

to design, build and then deploy an artificial

neural network for a model to train against,

is an intimidating concept for many

organisations in major industries – such as Oil

and Gas, Financial Crime and Telecoms – that

want to evolve AI pipelines.

AI and actionable intelligence rely on the

accessibility and speed of data science

enabled platforms. These platforms now

incorporate cutting edge tools designed to

simplify the way data scientists and business

intelligence professionals work.

Brytlyt brings data science, analytics, and visualisation together in one

platform to tackle these challenges. Organisations around the globe

using Brytlyt will see the benefits of an integrated data science solution

powered by GPUs, alongside powerful in-database AI features such as

instant Tensor-to-SQL table translation for accessibility, bridging the gap

between SQP and PyTorch

